SPECIFICATION

ITEM	RED TOP VIEW LED
MODEL	PCL-C4RBN10SA
CUSTOMER	
ISSUED DATE	

С	CUSTOMER					
Approved by	Approved by Approved by					
/	/	/				

SUPPLIER						
Drawn by	Checked by	Approved by				
-A3	#	jang				
/	/	/				

POWERLIGHTEC Co., LTD.

110-1 Galgot - ri, Jinwy - myun, Pyeongtaek-si, Kyunggi - do, Korea

Tel: +82-31-379-5400 Fax: +82-31-378-9759

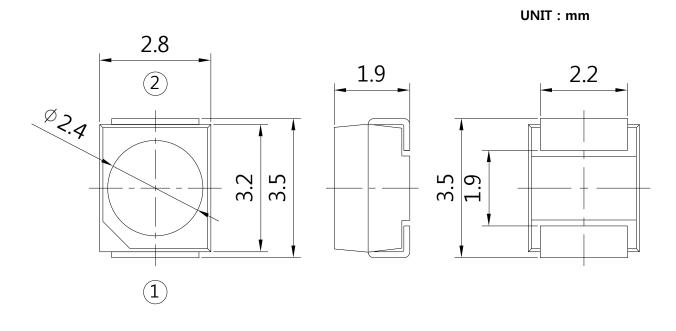
http://www.powerlightec.com

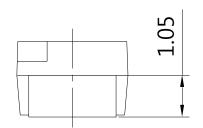
CONTENTS

- 1. Revision history
- 2. General description
- 3. Electro-Optical characteristics
- 4. Ranks
- 5. Composition of package
- 6. Environmental pollution free
- 7. Typical electrical
 - / Optical characteristics curves
- 8. Classification by name
- 9. Reliability
- 10. Soldering condition
- 11. Reel structure & Packing
- 12. Precaution for use

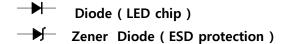
1. Revision history

Title	Specification for approval
Doc. No.	KQSP-LL-2003


Rev. No.	Date	Summary for revision	Remarks
00 01	2010. 4. 2010. 6.	New establishment Recommended soldering pattern	


2. General description

(1) Features


- Package Size: 3.5 ×2.8× 1.9mm
- SMD (Top View) type
- Very wide viewing angle
- High luminous intensity
- ESD protection (Class2 under 2KV)

(2) Outline Dimensions

3. Electro-Optical characteristics

(1) Absolute Maximum Rating

(Ta=25°C) ◆1

Parameter	Symbol	Value	Unit
Forward Current ⁺²	I _F	30	mA
Peak Forward Current ◆3	I _{FP}	100	mA
Reverse Voltage	V _R	5	V
Power Dissipation	P_{D}	100	mW
Operating Temperature •4	Topr	-40 to +85	°C
Storage Temperature •5	Tstg	-40 to +100	°C
Soldering temperature	Tsol	Reflow soldering : 260°C, 10 sec Hand Soldering : 300°C, 3 sec	

- ◆1 Ta: Ambient Temp
- ♦2 For Forward Current, please refer to Forward Current Derating Curve of this manual.
- ◆3 This is max. current under the condition if Duty Ratio (on / off time ratio) ≤ 1/10, Pulse Width ≤ 10 msec.
- ♦4 Refer to Forward Current Derating Curve of this manual.
- ◆5 This indicates Maximum storage temperature condition and for the actual storage, please follow the storage condition of user's notices of this manual.

(2) Electrical / Optical Characteristics

(Ta=25°C)

Parameter	Symb ol	Condition	Min	Тур	Max	Unit
Forward Voltage	V _F	$I_F = 20 \text{mA}$	1.9	-	2.6	V
Reverse Current	I_R	V _R =5V	-	-	10	μΑ
Luminous Intensity ■	I _V	$I_F = 20 \text{mA}$	-	500	-	mcd
Viewing Angle ★	2θ _{1/2}	$I_F = 20 \text{mA}$		120		deg.
Dominant Wavelength	Wd	$I_F = 20 \text{mA}$	618	-	636	nm

- Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve. Please refer to rank table.
- \star 01/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

4. Ranks

(1) Luminous Intensity Ranks

(Ta=25°C)

Iv Rank	Condition	Min	Тур	Max	Unit
A		300	-	400	
В		400	-	500	
С	$I_F = 20$ mA	500	-	600	mcd
D		600	-	700	
E		700	-	800	

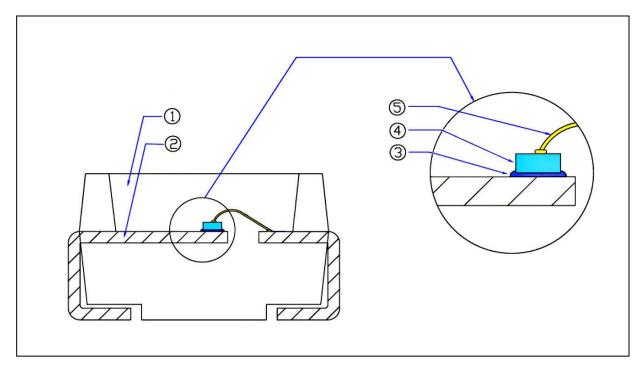
^{*} Measurement Uncertainty of the Luminous Intensity: ± 10%

(2) Forward Voltage Ranks

(Ta=25°C)

V _F Rank	Condition	Min	Тур	Max	Unit
А		1.9	-	2.2	
В	$I_F = 20 \text{mA}$	2.2	-	2.4	V
С		2.4	-	2.6	

X Measurement Uncertainty of the Forward Voltage: ± 7%


(3) Dominant Wavelength Ranks

(Ta=25°C)

W _D Rank	Condition	Min	Тур	Max	Unit
А		618	-	624	
В	$I_{\text{F}} = 20\text{mA}$	624	-	630	nm
С		630	-	636	

5. Composition of package

(1) Composition of package

(2) Component material

Number	Item	Material
1	Encapsulant	Silicone
2	Electrodes	Ag Plating Cu Alloy
3	Die adhesive	Ag Epoxy
4	LED Chip	AlInGaP
5	Au Wire	0.9~1.2mil

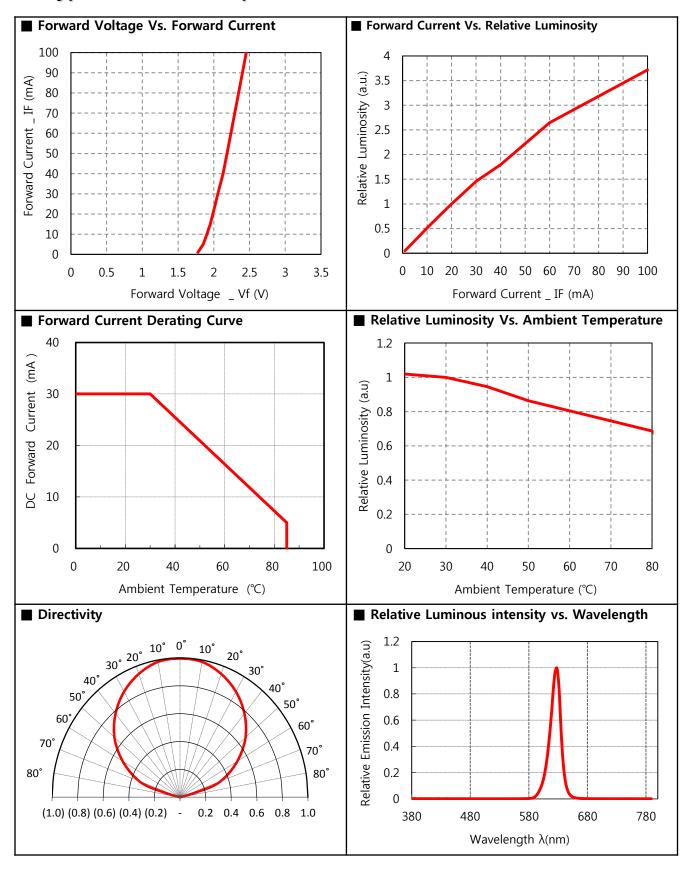
6. Environmental pollution free

(1) Testing institute

SGS Testing Korea CO.,Ltd.

(2) Test material

LED Package ▶ ① Resin, ② Metal


① Resin Test

Test item	Unit	Result	Test method
Pb	mg/kg	No detection	
Cd	mg/kg	No detection	ICP 62321:2008
Hg	mg/kg	No detection	ICP UV-VIS
Cr ⁺⁶	mg/kg	No detection	GC/MS
PBBs/PBDEs	mg/kg	No detection	

2 Metal Test

Test item	Unit	Result	Test method
Pb	mg/kg	No detection	US EPA 3052(1996)
Cd	mg/kg	No detection	US EPA 6010B(1996) ICP
Hg	mg/kg	No detection	US EPA 3060A(1996) US EPA 7196A
Cr ⁺⁶	mg/kg	No detection	UV US EPA 3540C
PBBs/PBDEs	mg/kg	No detection	GC/MS

7. Typical electrical / Optical characteristics curves

※ 25°C Ambient Temperature Unless Otherwise Noted

9. Reliability

(1) Test items and results

Test Item	Standard Test Method	Test Conditions	Note	Number of Damaged
Resistance to Soldering Heat (Reflow Soldering)	JEITA ED-4701 300 301	Tsol=260°C, 10sec. (Pre treatment 30°C, 70%,168hrs.)	2 times	0/20
Solder ability (Reflow Soldering)	JEITA ED-4701 300 303	Tsol=215±5℃, 3sec.	1 time over 95%	0/20
Temperature Cycle	JEITA-ED-4701 100 105	-40°C ~ 25°C ~ 100°C ~ 25°C 30min. 5min. 30min. 5min.	200 cycles	0/20
Temperature Humidity Storage	JEITA ED-4701 100 103	Ta=60°C, RH=90%	1000 hrs.	0/20
Life Test Condition 1	Internal Standard	Ta=25℃, IF=20mA	1000 hrs.	0/20
Life Test Condition 2	Internal Standard	Ta=25℃, IF=30mA	500 hrs.	0/20
High Temperature Life Test	Internal Standard	Ta=85℃, IF=7.5mA	1000 hrs.	0/20
High Humidity Heat Life Test	Internal Standard	60℃, RH=90%, IF=15mA	500 hrs.	0/20
Electrostatic Discharges	MIL-STD-883 Method 3015	Class2 , 2kV ,1.5KΩ ;100pF	3 Time	0/20

(2) Criteria for judging the damage

Itom	Coursels al	Tank Can division a	Criteria for Judgment		
Item	Symbol	Test Conditions	Min.	Max.	
Forward Voltage Reverse Current Luminous Intensity	VF IR IV	IF=20mA VR=5V IF=20mA	- L.S.L.**) × 0.7	U.S.L.*) × 1.1 U.S.L.*) × 2.0	

*) U.S.L. : Upper Standard Level

**) L.S.L.: Lower Standard Level

PCL-C4RBN10SA KQSP-LL-2003

8. Classification by name

(1) POWERLIGHTEC Lamp

(2) PACKAGE TYPE

Туре		Model		Size [mm]	Pad
	3020	C5	0	3.0*2.0*1.3	2
		C4	Р	3.5*2.8*1.9	2/4
	3528	C41	0	3.5*2.8*1.2	4
		C42	0	3.2*2.8*1.4	6
Topyiou	5450	C6	0	5.4*5.0*1.6	6
Top view		C 7	0	5.4*5.0*1.6	6
		C9	Р	5.4*5.0*1.6	6
		D9	Р	5.4*5.0*1.6	6
	5630	B1	0	5.6*3.0*0.9	4
	L2L	A1	Ν	15*3.8*1.15	2
BLU	5630	B1	0	5.6*3.0*0.9	4
	LEDGE Series	L1 [0.4W]	Р	6.0*5.0*1.3	2
Power		L2 [0.8W]	Р	6.0*5.0*1.3	2
		L3 [1W]	Р	6.0*5.0*1.3	2
		L4 [1.5W]	Р	6.0*5.0*1.3	2

N: New Product P: Product D: Develop Product O: Old Product

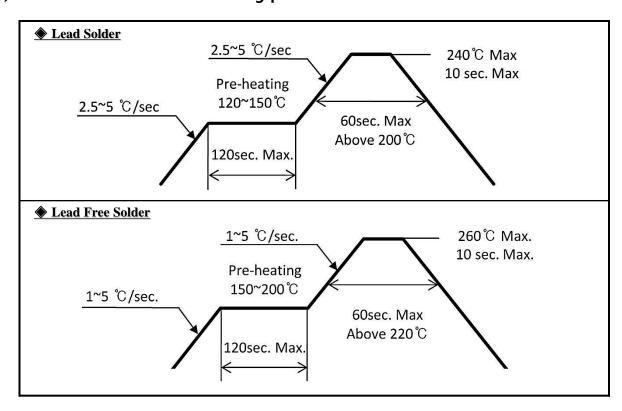
(3) EMITION COLOR

В	С	SB	G	Υ	0	Α	R
Blue	Cyan	Sky Blue	Green	Yellow	Orange	Amber	Red
W	ww	PW	YG	D	RGB	UV,R	WR
White	Warm White	Pink White	Y-Green	Dual	R, G, B	Ultra Violet, Red	White , Red

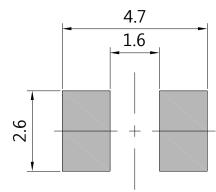
(4) LENS COLOR

Α	A Colored Transparency		Colored Diffusion
В	B Colorless Transparency		Milky Diffusion

- (5) ESD PROTECTION (Zener Diode: Z / Varistor: V / No Protection: N)
- (6) NUMBER OF UV CHIP (1Chip: 1 / 2Chip: 2 / 3Chip: 3)
- (7) NUMBER OF RED CHIP (1Chip: 1 / 2Chip: 2 / 3Chip: 3)
- (8) MOLD RESIN (Epoxy: E / Silicone: S)
- (9) POLARITY MARK (Anode: A / Cathode: C)
- (10) MATERIAL



10. Soldering condition


(1) Soldering condition

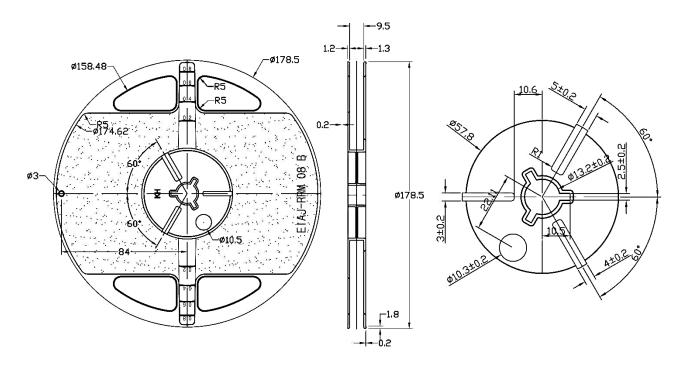
Reflow soldering			Hand soldering		
Step	Lead solder	Lead free Solder	Condition	Spec.	
Pre heating	120~150 ℃	150~200 ℃	Soldering	Max 300℃	
Pre heating time	Max 120 sec.	Max 120 sec.	Temp.		
Peak temp.	Max 240 ℃	Max 260 ℃	Soldering	Max 3sec.	
Soldering time	Max 10 sec.	Max 10 sec.	Time		

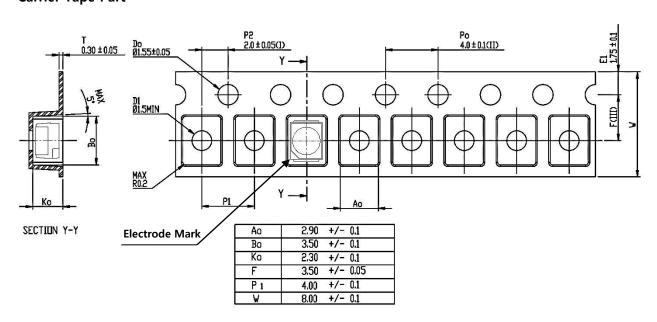
(2) Recommended reflow soldering profile

(3) Recommended soldering pattern

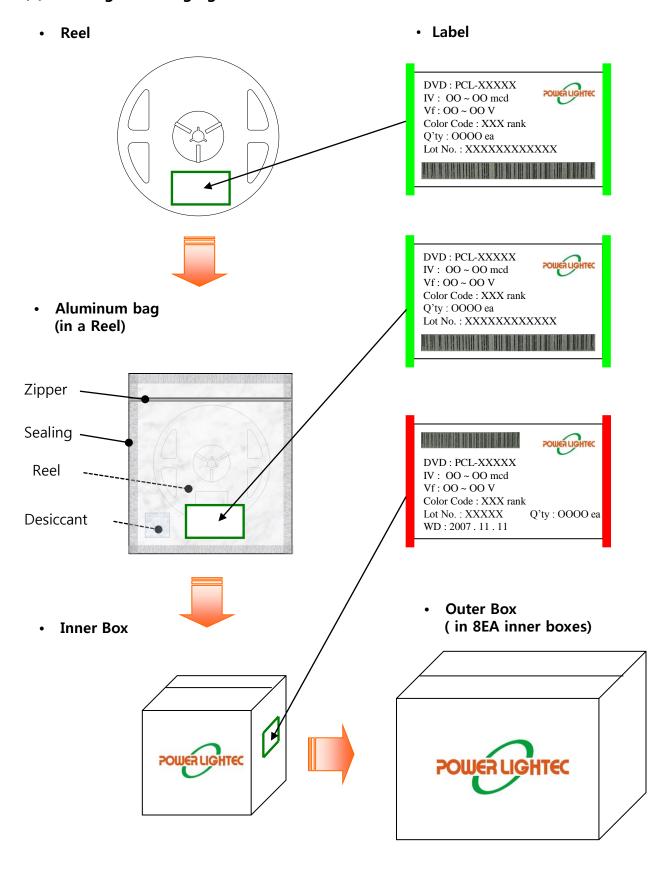
(4) Notices in Soldering

- If the humidity is absorbed in the LED, it occurs the expansion and evaporation during soldering process.


 This phenomena may cause troubles in optical characteristics of LED and the delamination and crack in the encapsulant.
- To prevent the humidity, the package is made of aluminum moisture barrier bag in which the desiccant is included.
- Storage condition before unpacking :
 - Keep the temperature 5~30°C, humidity less RH65% and use it within 6 months.
 - When unpacking, check if there is a hole or any tear off in the sealed moisture barrier bag.
- LED needs to carry out Soldering/SMT within 3 hours after unpacking.
- If the unused LEDs remained after unpacking, keep them in moisture prevention packing (the sealed vessel including the desiccant) or put them in the existing given moisture barrier bag and seal them again and keep them in the condition listed below.
 - Keep the temperature 5~30°C, humidity IRH30% or less.
- Despite of the storage under the specified condition, a small amount of humidity penetration will keep in progressing. Thus, to remove the humidity penetrated into LED, please carry out the Baking as below.
- Baking (dryness) time and condition
 - Baking condition : temp. $65 \pm 5^{\circ}$ C humidity less RH10% for more than 24 hours.
 - Baking time
 - If 168 hours (7 days) have passed since stored in the condition and method specified above after unpacking,
 - If 3 hours have passed in the condition without moisture prevention storage after unpacking,.
 - If 6 months have passed in the storage condition before unpacking
- LED encapsulant is very soft material. Thus, pay attention not to apply the strong force to LED encapsulant. Especially, if you use automatic mount device in SMT process, let Pick-up nozzle not to touch the encapsulant directly.
- During Reflow soldering, pay attention not to apply the impact, force or vibration to LED package.
- Avoid the process to lower the temperature sharply and cool it down.
- Do not repeat Reflow soldering twice and more.
- If the PCB temperature have not fallen down less than 80°C just when Soldering is completed, do not laminate among PCBs. The high heat of PCB may damage LED package and cause the fatal fault.
- After Soldering completed, do not bend or distort the circuit boards.
- After LED의 Soldering / SMT completed, do not conduct the work to melt LED Solder and remove it again.
 - If it is needed to remove the LED, use Double- head solder tip and check whether the electrical characteristics of LED are changed and the change of appearance to make sure of the damage of LED


11. Packing & Packaging

(1) Reel & Carrier tape


Reel Part

Carrier Tape Part

(2) Packing & Packaging

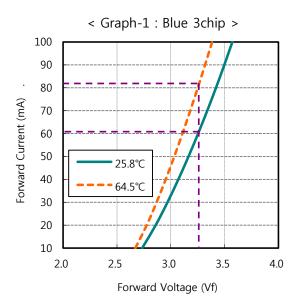
PCL-C4RBN10SA KQSP-LL-2003

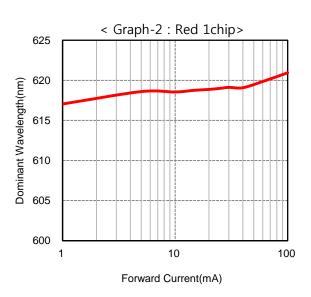
12. Precaution for use

(1) Humidity Penetration Prevention

- If the humidity is absorbed in the LED, it occurs the expansion and evaporation during soldering process. This phenomena may cause troubles in the optical characteristics of LED and the lamination and crack in the contact surface.
- To prevent the humidity penetration in LED, the package is made of aluminum moisture barrier bag in which the desiccant is included.

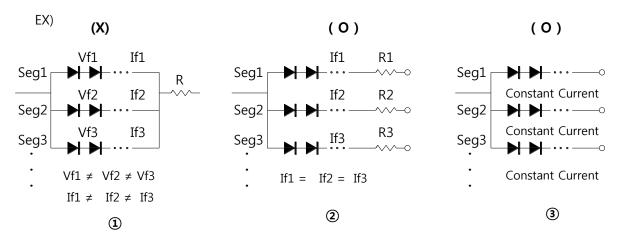
(2) Storage


- Storage condition before unpacking :
 - Keep the temperature 5~30°C, humidity less RH65% and use it within 6 months.
 - When unpacking, check if there is a hole or any tear off in the sealed moisture barrier bag.
- LED needs to carry out Soldering/SMT within 3 hours after unpacking.
- If the unused LEDs remained after unpacking, keep them in moisture prevention packing (the sealed vessel including the desiccant) or put them in the existing given moisture barrier bag and seal them again and keep them in the condition listed below.
 - Keep the temperature 5~30°C, humidity IRH30% or less.
- Despite of the storage under the specified condition, a small amount of humidity penetration will keep in progressing. Thus, to remove the humidity penetrated into LED, please carry out the Baking as below.
- Baking (dryness) time and condition
 - Baking condition: temp. 65 ± 5℃ humidity less RH10% for more than 24 hours.
 - Baking time
 - If 168 hours (7 days) have passed since stored in the condition and method specified above after unpacking,
 - If 3 hours have passed in the condition without moisture prevention storage after unpacking,
 - If 6 months have passed in the storage condition before unpacking
- Do not keep them in the environment where the temperature changes rapidly regularly or irregularly or humid place but follow the storage condition and baking condition on the above.
- Inside and outside of this product, there are some silver-plated parts. Silver-plated area is subject to decolorize due to the corrosive gas. If discoloration occurred, it may cause troubles in Soldering and the deterioration of optical characteristics. Thus, do not keep the LED in corrosive gas environment or let it alone..
- The cares should be taken to maintain the clean storage environment.

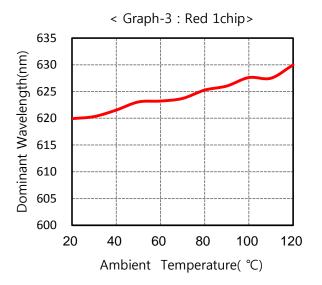

(3) Use and Operation Environment

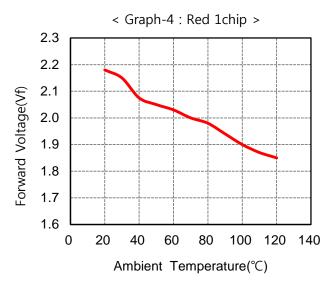
- Regardless of LED action/inaction, avoid the place where the ambient temperature changes rapidly and the humid place.
- As this LED is not water-proof, install the protection device not to be affected by surrounding environment and avoid the direct exposure to water, humidity or spray.
- The use in the corrosive gas environment, may cause the discoloration of silver-plated area and the deterioration of optical characteristics.

(4) Configuration of Recommended Circuit


- Apply the current that does not exceed max. rating to each LED and configure the circuit so that the current lower than rated current can flow, if possible.
- It is recommended to configure the circuit so that the static current can be supplied to the LED.
 - The heat emits due to the ambient temperature and the electric power to be supplied to LED
 Chip. The emitted heat raises the temperature of Chip Junction and LED Package and accordingly the LED characteristics and life span shall be changed.
 - If running the LED with static current, the change of Vf does not matter seriously. However, If running with static voltage or running with similar voltage, the current characteristics for Vf may be changed due to temperature rising and the current may increase.
 - As shown in <Graph-1>, if the static voltage 3.25V maintained for LED, the current of 60mA are applied at Ta 25.8°C but 82mA at Ta 64.5°C, which shows the increase of 22mA.

- * The above graph is the data measured by our measuring environment and test equipments. Use them only for reference and when using a LED, it is required to reverify according to the usage environment
- If used the LED by mixing the parallel connection and serial connection, for the parallel connected area, the same current is not supplied to each parallel area due to the difference of forward voltage(Vf) of LED and the current exceeding the rating will flow which may cause the damage of LED. Take account of this when designing the circuit.


- This product operates by the forward current. If the reverse voltage is continuously applied, LED Chip may be damaged.
- LED's Dominant Wavelength shall be changed according to the size of operating current. <Graph-2>
- It is recommended to use circuit ② , ③ which regulates the current flowing through each LED, In the meanwhile, when driving LEDs with a constant voltage in circuit ① , the current thorough the LEDs may vary due to the variation in forward voltage of the LEDs, In the worst case, some LED may be subjected to stresses in excess of the absolute maximum rating.



(5) Heat Generation

- LED emits the heat due to the ambient temperature and the electric power to be supplied to LED Chip. The emitted heat raises the temperature of Chip Junction (Junction of Pole P and Pole N) and LED Package and accordingly the LED characteristics and life shall be changed.
 - If the electric power to be supplied to LED Chip increases, the heat increases.
- As the heat emits when using a LED, the careful heat emission design is required for the apparatus to be combined additionally.
 - The temperature is subject to LED PKG and circuit board, the heat resistance of additional apparatus to be combined and the density of LED arrangement. At the same time, the careful circuit design and apparatus design are required to avoid the concentration of the emitting heat.
- LED's operating current should be determined after considering the temperature of surrounding environment and PCB (Printed Circuit Board) when running the LED.
 - Refer to '7. Electrical Optical Graph', **Forward Current Derating Curve** to determine the operating current.
 - Especially, in the place where receives directly the radiant such as sun light, as the temperature of apparatus rises regardless of the ambient temperature, it is required to take account of this when designing.

- LED changes the intensity of light and color coordinate according to the change of temperature.
 - Refer to **Relative Luminosity Vs. Ambient Temperature** of Electrical/Optical Characteristic Graph of this manual & <Graph-3> .
- LED drops forward voltage(Vf) according to the increase of temperature. Refer to <Graph-4>

* The above graph is the data measured by our measuring environment and test equipments. Use them only for reference and when using a LED, it is required to reverify according to the usage environment

(6) Static Electricity

- Static Electricity and surge voltage may cause damage to LED.
- When handling LED, it is recommended to wear the anti-static wrist band or gloves.
- All facilities, devices and equipments should be grounded.
- In case of final inspection after LED SMT, check if LED is damaged by static electricity.
- The static electricity test allows us to check easily whether it is damaged or not through low current (less than 1mA) ON/OFF test.
 - The damaged LED shows the special characteristics that forward current value decreases or LED doesn't turn ON as the leakage current increases sharply.

(7) Cleaning

• To clean a LED, use the solvents like isopropyl alcohol. If you use different kinds of solvents, it may melt LED Package and encapsulant. Pay attention to this. In addition, do not use the ultrasonic cleaning to the LED.

(8) Notices in Handling

- LED encapsulant has soft silicon material. Thus, do not do any works that may affect pressure, impact, and scratch directly to encapsulant. The fatal fault may occur.
 - Do not press the encapsulant directly by hand.
 - Do not allow the sharp point of pincette or teaser to reach the encapsulant
 - While processing the manufacturing of apparatus using a LED, do not apply the pressure or impact to the encapsulant.
 - Do not allow Pick-up nozzle to contact directly to the encapsulant.
 - Never allow the SMT to laminate the completed PCB directly.

(9) Others

- The intensity of light of LED is strong enough to damage the eyes. Never look at the LED directly for a few seconds without wearing the protection equipments.
- These LEDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household appliance). Consult POWERLIGHTEC's sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health. (such as airplanes, aerospace, automobiles, traffic control equipment, life support systems and safety devices)
- User shall not reverse engineer by disassembling or analysis of the LEDs without having the prior written consent of POWERLIGHTEC. When defective LEDs are found, User shall inform to POWERLI -GHTEC directly before disassembling or analysis.
- The formal specification should be exchanged and authorized between both parties before starting a great deal of transactions.